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Electron microscopy/diffraction has been used to study the crystal structures of the family of titanium 
oxides Ti,02,_x, 15 _< n< 36. Single-phase material does not occur; the structures are multiply twinned 
and show a wide variation in the degree of order. Thus X-ray studies failed to reveal these structures. 
Electron diffraction patterns are in excellent agreement with ideal unit-cell parameters based on a regular 
crystallographic shear operation ½[011] (172), (rutile) whereby one in every 2n oxygen-only (172) planes 
is eliminated from the rutile structure, and the adjacent rutile blocks closed up by the vector ½1011]. 

1.Introduction 
In the stoichiometry range TiOx, 1.750 < x < 1.889, the 
existence of six ordered structures TinOzn-1, 4< n < 9, 
was revealed by X-ray powder diffraction (Andersson, 
Collrn, Kuylenstierna & Magnrli, 1957). The structure 
of one of these, Ti509, was then determined by single- 
crystal X-ray diffraction analysis (Andersson, 1960). 
The 'ideal' Ti509 structure may be described as being 
derived from the 'idealized' rutile type (cf. § 2) by first 
removing every tenth oxygen-only plane parallel to 
(121)r,* and then displacing the adjacent rutile slabs by 
approximately 5[011It to collapse the structure. This 
restores the octahedral coordination of the titanium 
atoms and, across the crystallographic shear (CS) plane 
thus formed, the oxygen lattices are continuous but 
the titanium lattices are in antiphase. This model was 
then extended (to regular CS after removing every 2nth 
oxygen-only plane) and successfully used to interpret 
the X-ray powder patterns of the other members of the 
series (Andersson & Jahnberg, 1963). It may be de- 
scribed as the regularly recurrent CS operation 5<011> 
{121}, (rutile) (Anderson & Hyde, 1967). In the range 
1.89<x<2.00 X-ray powder diffraction analysis did 
not clearly reveal any further ordered phases, although 
it did suggest their existence (Andersson & Jahnberg, 
1963). 

By analogy with several ReO3-derived series having 
different CS planes {lk0}, and noting the observation 
of discrete {152} planar faults in rutile by Eikum & 
SmaUman (1965), Anderson & Hyde (1967) suggested 
that another family of titanium oxides probably 
existed. These would be derived by the regularly re- 
current CS operation ½(011 > {1~2}, (rutile); and would 
also have the generic formula TinOzn-x. We believe 
that this is the family of phases recently reported 
(Bursill, Hyde, Terasaki & Watanabe, 1969). As with 
the earlier {121} family, their diffraction patterns 
showed a pronounced rutile-like substructure; but 
they also indicated that the CS planes were parallel 

* The subscript r denotes rutile indices. 

to {1~2}, and not {121}r. The observed values of n 
appeared to range from 15 to approximately 36 [but 
see § 4(b)], corresponding to TiO~ with 1.933 < x > 1.972. 
They were resolved by electron microscopy and se- 
lected area diffraction. 

These {132}r phases always exhibit fine scale poly- 
synthetic twinning (Bursill et al., 1969) and, in addition, 
several members coexist in all preparations [cfi § 4(b)]o 
Single-crystal X-ray diffraction analysis is therefore 
impossible. However, the hypothesis that the {132}r 
family is derived by the regular CS operation 5(011> 
{132}, (rutile) provides a plausible structural model on 
which to base an analysis of the available single-crystal 
electron diffraction patterns. The plausibility of this 
hypothesis is now substantially increased: we have 
determined that the displacement vector at an isolated 
{172} fault (a 'Wadsley defect', Andersson, 1970) in 
rutile is R~5<0, 0.90, 0"90>r and not ~<211>r as sug- 
gested by van Landuyt (1966). This is very close to, 
and may be idealized as, ½<011>r (Bursill & Hyde, 
1970 a). Furthermore we have diffraction contrast 
evidence that this same displacement vector operates 
at parallel aligned {132}r CS planes when they are 
aggregated into groups of 10 or so, with a mean separa- 
tion of 4.5 to 5.0 nm (corresponding to WiO~l.97s) 
(Bursill & Hyde, 1970b). These facts provide strong 
support for the proposed model. 

We therefore assume that the displacement vector 
at ordered (132)r CS planes is the same, viz. R ~ _ 
5[011]r. This allows us to deduce unit-cell parameters 
for the ordered (l~2)r phases which are in excellent 
agreement with the observed diffraction patterns. 

2. The structural model 
Rutile (TiO2) is tetragonal (ar=0"45937, cr=0"29581 
nm) with Ti at 000 and ~-}, and O at uuO; fi~0; 5 - u ,  
5+u,  5; 5+u,  ½-u,  5; and u=0.305 (Wyckoff, 1963). 
The oxygen atoms are in a puckered hexagonal close 
packed arrangement, the titanium atoms occupying 
alternate rows of octahedral interstices parallel to 
er---ahex. If the ruffle structure is idealized so that u = 
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0.25 then ½[011]r is a vector in the oxygen lattice, but 
goes from a titanium-filled row of octahedral inter- 
stices to an empty row. 

Fig. l(a) and (b) shows the idealized layers at 
Zr=0,½ after removing every eighteenth oxygen-only 
plane parallel to (132)r and closing up adjacent rutile 
slabs by a mutual displacement equal to the 'ideal' 

vector R=½[011]r. The structure along the CS plane 
resembles that in the (121)r family, except that the 
face-sharing octahedra are 50 per cent further apart 
(cf. Figs. 6 and 12 of Anderson & Hyde, 1967). In the 
idealized rutile structure the sequence of atom planes 
parallel to (152) is 

• . . B A B A B A B A B . . .  

0 oxygen • titanium 

(a) 

N N 
N 

NN 
NNNNN  N 

 NN]ZNNNNNN 

Fig. 1. Idealized (u=0.25) layers parallel to (001)r after re- 
moving every eighteenth oxygen-only plane parallel to 
(l~2)r and closing up the adjacent rutile slabs by R =  
½[011lr. (a) Zr=0; (b) Zr=½. 

(A=TiO,  B=O) .  The presence of a CS plane (.) 
modifies this to 

• . . B A B A . A B A B . . .  

The modular unit between CS planes is nA + ( n -  1)B, 
giving the same generic formula, TinO2n-~, as for the 
(121)r family. 

Consideration of the three-dimensional lattices oc- 
cupied by the face-sharing pairs of [TiO6] octahedra 
for different n values leads to the following axial sys- 
stems for the TinOzn-x (132)r structures in terms of the 
rutile-type substructures. 

(i) For even values of n: 

a=2ar - -Cr ,  
b= - a r - b r - c r ,  
c = a r - 5 b r  + ( n -  9)/2cr. 

(ii) For odd values of n: 

a = a r -  b r -  2 e r ,  
b = a r + b r + e r  , 
c=  --[br + ( n -  8)/2er . 

Different systems for even and odd n are necessary in 
order to have primitive unit-cells with reasonably 
short c axes. An alternative choice would be to double 
the c axes for odd n. (cfi Andersson & Jahnberg 
doubled the c axes of TinO2n-x (121)r for even n.) 
However this is confusing as it leads to non-primitive 
unit cells. 

The 'ideal' unit-cell parameters for 15 <n <22 are 
given in Table 1. The following direct matrices relate 
the indices of rutile and TinO2n-1 (132)r reflexions. 

(i) n even" 

TinO2n-1 (132)r 

rutile 
N 

2 0 1 
T T T 
1 - ~  (n -9) /2  

Table 1. '1deal' unit-cell parameters o f  (132)r CS structures 

n a b c ~ fl y 
15 0.87867 nm 0.71382 nm 1.54622 nm 101"57 ° 93"58 ° 106"20 ° 
16 0.96519 0.71382 1.61302 89.49 85.73 119.05 
17 0.87867 0.71382 1.75808 96.12 99.69 106.20 
18 0.96519 0.71382 1.81710 93.41 89.07 119.05 
19 0.87867 0.71382 1.99145 91.87 104.39 106.20 
20 0.96519 0.71382 2.04374 96.48 91.72 119.05 
21 0.87867 0.71382 2.23962 88.52 108.06 106.20 
22 0.96519 0.71382 2.28625 98.90 93.81 119.05 

A C 27B - 14" 
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(ii) n odd 

TinOzn-1 (132)r 

rutile 

1 1 1 
s ( n -  8)/2 0 2 

The following inverse matrices may be used to cal- 
culate the 'ideal' atomic coordinates x, y, z of a 
TinO2n-x (132)r homologue from the rutile coordinates 
Xr, Yr, Zr. 

(i) n even" 
TinOzn-1 (132)r 

i n - 4  
rutile 1/(2n-1) I l l_n7 16--2n10 

v 
(ii) n odd: 

ruffle 1/(2n- 1) 

TinO2n-1 (132)r 
I 
I n - 3  n + 2  2 

I 8 - n  n - 8  6 
5 4 

v 

3. Specimen preparation 

Six samples were prepared under the conditions set 
out i n  Table 2. The single-crystal starting material 
was from a boule of approx 99.8 per cent purity 
supplied by Nakazumi Crystals Corporation (Osaka, 
Japan). Powder samples were prepared from Koch- 
Light's 99.9 per cent ruffle. 

Electron microscope specimens were made by crush- 
ing the powder or small chips of single crystal between 
glass slides, and mounting the fracture flakes on car- 
bon support films. They were examined in a JEM-6A 
microscope operated at 100 kV, and could be tilted 
up to + 20 ° about any horizontal axis. 

4. Experimental results and theft interpretation 

(a) Indexing the diffraction patterns 
Examples of diffraction patterns showing closely 

spaced reflexions along g(132)r and/or g(121)r are 
given in Figs. 2 to 7. They may only be unambiguously 
indexed (and hence a reliable value assigned to n) for 
symmetrically-excited low order Laue zones with the 
CS planes parallel to the incident beam, and well 
ordered. The strong reflexions lie close to rutile posi- 
tions: those clo~e to the {132}r and/or {121}r positions 
(and lying along the rows of closely-spaced spots 
produced by the ordered CS planes) are indexed as 
(132)r and/or (121)r respectively. The other strong 
reflexi'ons are then indexed (also as ruffle spots) and 
the corresponding rutile zone axis determined. 

The displacement vector ½[011]r has collapse com- 
ponents of 0"50d1~2 and 0.50d1~ 1 normal to (132)r and 
(121)r respectively, i.e. the ideal CS spacings are 
D1~2= dl~2(n-0.50 ) and DI~ 1 = dl~l(n-0:50 ), with 
d1~2= 0.1036 and d151= 0.1687 nm. From these equa- 
tions an approximate value for n may be deduced by 
measuring the interval between the closely-spaced spots 
along g(132)r and/or g(121)r. 

The ruffle zone axis is then transformed to the 
corresponding TinOzn-1 zone axis by using the inverse 
matrix given above for the (132) structures, or the 
similar matrices given by Andersson & Jahnberg (1963) 
for (121) structures. N.B. The matrices only apply for 
(152) and (121) CS planes, and not for {132} and 
{121} without appropriate permutations. A detailed 
comparison of observed and calculated d spacings and 
interplanar angles for several adjacent n values (using 
the unit-cell parameters given in Table 1 for the (132) 
phases and those of Andersson & Jahnberg (1963) for 
the (121) phases) then establishes n uniquely. Table 3 
gives the results of such a comparison for several n 
values in both series: the agreement between the 
observed and calculated values is well within experi- 
mental error. Uncertainties in the camera constant, 
and streaking through the diffraction spots, may 

Table 2. Preparation conditions and compositions of samples 

Sample Method of Preparation 
No. (a) preparation(b) temperature(c) 

K 
lS A 1343 
2s A 1223 
3s A 1245 
4s A 1275 
5s A 1275 
6p B 1303 

(a) s=single crystal;p=powder. 

Time Ratio Estimated 
(days) PH2/PH20 composition(d) 

6 30 1"96 i 
2 300 1.94-5 i 
3 300 1-936 j 
4 300 1.9268 k 
4 300 1.9247 k 
? ? 1"889 l 

(b) TiO2 reduced by either A, equilibrating with a flowing H2+ t"I20 gas mixture in a tube furnace, or B, equilibrating with a 
circulating H2 + H20 gas mixture, the sample being on a microbalance. 

(c) All samples were cooled to room temperature in about 15 minutes. 
(d) Composition determined by 

i estimation, using PH2]PH 0 vs 2 data from R. R. Merritt (unpublished). Accuracy, A)?~ + 0.005. 
• . 2 " 

j weighing approx 2g of sample before and after reduction; A.~= _+ 0.001. 
k reoxidising approx 0.5g of sample to TiO2 in 02 on an Ainsworth thermobalance; A2~ _+0.0002. 
l measuring the weight loss of a TiO2 sample on a Cahn thermobalance; A)? ~ + 0.0005. 
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Figs.2 to 7. Examples of indexed diffraction patterns of (1El)r and (l~2)r CS phases. 

Fig.2. n =  6,7(l~l )r, zone axis [010]. Fig. 3. n=8( l~ l ) r ,  zone axis [010]. 

[To face p. 212 
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, 000 

(a) (b) 
Fig.4. (a) n=9(l~l)r, zone axis [100]. (b) n=9,10(l~l)r ,  (00l) row. Fig. 5. n =  16(112)r, zone axis [120]. 

L32 r 
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(a) (b) 
Fig.6. (a) n=  18(1~2)r, zone axis [210]. (b) n=  18(1~2)r, zone axis [230]. 
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(a) (b) 
Fig.7. (a) n=20(l~2)r, zone axis [230]. (b) n=20(112)r, zone axis [110]. 
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(a) 

(c) 

Fig. 8. (a) Diffraction pattern of a disordered specimen of n-~ 25(1~2)r showing streaking parallel to g(lg2)r. Note that this inter- 
sects g(21"l')r 5 times, g(3]"2), 8 times, g(10T)r 3 times and g(1]'0)r 2 times. (b) Diffraction pattern of a well ordered specimen of 
n =  18(1~2)r with 5 'spots' along g(l'2-'l')r arising from the twin orientation with (31"2)~ CS planes inclined at 60.6 ° to the incident 
beam. (c) Diffraction pattern from an area adjacent to that which gave (b); twin orientation now absent. 
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make it difficult to establish n to better than +1 if 
n>20 .  

The importance of specimen orientation and order 
is illustrated by Fig. 8(a) in which it is clear that 
streaking parallel to g(132)r intersects g(2TT)r five 
times, g(3T2)r eight times, g(10T)r three times and 

m 

g(llO)r twice. When this streaking is inclined to the 
reflecting sphere it will produce apparently sharp re- 
flexions along these reciprocal lattice vectors. Con- 
tinuous streaking parallel to g(132)r-g(00L) means 
that there is scattered intensity for g(HKL) with all, 
including non-integral, values of L. (H,K and L are 
indices in the TinOzn-1 system). The number of 'spots' 
along g(hkl)r is therefore equal to the highest common 
factor of H and K. Thus in the above example 

b 

(21 l)r transforms to (5, 0, 9 -  ½n)i or (5, 0, 6 3 -  ½n)u ; 
(3T2)r transforms to (8, O, 14½-n)i or (8, 0, 10½-n)u ; 

(10T)r transforms to (3, 0, 5½-½n)i or (3, 0, 4-½n)i i  ; 
(1T0)r transforms to (2, 0, 3½)i or (2, 0, 2½)u ; 

and so we expect 5, 8, 3 and 2 spots respectively along 
g(ZT]')r, g(3T2)r, g(10T)r and g(1TO)r. 

In addition to the 18 spots along g(132)r, due to the 
ordered (132)r CS planes parallel to the incident beam, 
Fig. 8(b) shows 5 'spots' along g(121)r. (121)r transforms 
to (3, 2, 10~-  ½nh or (5, 2, 9 -½n)u ;  so that no inter- 
mediate spots are expected to appear along g(121)r. 
This apparent anomaly is simply explained by as- 
suming the presence of (3T2)r CS planes (inclined at 
60.6 ° to the incident beam), i.e. the crystal is twinned. 
The reflexion (121")r then transforms to (5, O, 9 ~n), 
or (5, 0, ~ - -½n)u  in the twin system. In this particular 
case they would be expected even for a perfectly ordered 
perfectly oriented crystal since, for n=18 ,  (121)r---~ 
(500)t. Many similarly twinned patterns were en- 

Table 3. d spacings and interplanar angles in (121)r and (132)r CS structures; a comparison 
of  observed values with those calculated from the direct matrices in Andersson & Jahnberg (1963) (for (121)r) 

and in this paper (for (132)r) 

Zone axis 
Plate Figure CS Ti,,O2.-i 

number number plane n indices 
8049 2 (121) 6 [010] 

7 [0101 

8078 3 (121) 8 [0101 

5213 4(a) (121) 9 [100] 

5215 4(b) (121) 10 [1001 
7012 5 (132) 16 [1201 

½[011] 

J~-[1211 

7345 6(a) (132) 18 [21 O] 
½[0111 

-}[121] 

dHKL (00L) A (HKL) 
(HKL) Obs. Calc. Obs. Caic. 

002 0.955 nm 0.9546 nm 
102 0.518 0.5180 79.5 ° 79.25 ° 
100 0.423 0.4234 53" 5 53-42 
10~ 0.491 0.4957 110.0 109.93 
102 0.321 0-3232 38-0 37"69 
001 1.123 1.1235 
102 0-524 0-5252 92.0 91.56 
10T 0.483 0.4808 67.0 66.24 
100 0.394 0.3890 47"5 47.76 
103 0.467 0.4709 117.0 116.33 
002 1-297 1.2984 
10~ 0.511 0.5129 78.5 77.83 
102 0.448 0.4460 58.5 58-21 
100 0-366 0"3666 44.0 44.32 
102 0.302 0.3010 34.5 35.00 
001 1"452 1.460 
OT2 0.631 0.6249 71.5 70.43 
011 0.667 0.6647 97.0 95.72 
OTO 0.578 0.5834 120-0 119.14 
013 0.518 0.5178 50.5 50-83 
002 1-595 1.6007 
001 1"611 1.6064 
210 0.472 0.4706 86.5 86.45 
21I 0-458 0"4594 103"0 103"03 
211 0-444 0"4443 70"5 70"43 
212 0.417 0'4175 117-8 117.70 
001 1"611 1.6064 
210 0.472 0"4715 86"5 89.26 
211 0"458 0"4540 103"0 105"67 
211 0-444 0"4508 70"5 72"96 
212 0"417 0"4089 117"8 119"86 
001 1"823 1-814 
120 0"354 0"3532 92"5 93"49 
121 0"348 0"3507 81-2 82"36 
12--3" 0"344 0-3428 103"2 104"36 
122 0"335 0"3361 70"7 71-78 
001 1"823 1-814 
120 0"354 0"3523 92"5 95-35 
121 0"348 0.3520 81"2 84"21 
12--i 0"344 0"3399 103-2 106"10 
122 0"335 0"3392 70"7 73"48 



ACTA CRYSTALLOGRAPHICA, VOL. B27, 1971bBuRSILL AND HYDE PLATE 6 
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(b) 

(c) 

Fig.9. (a), (b) Diffraction patterns of (112)r CS phase mixtures showing a parallel intergrowth of (a) n=  18, 20; (b) n=20, 22; 
[(001) rows]. (c) Diffraction pattern from a mixture of n=9,  10(l~l)r and n=  16(1~2)r. 

[To face p. 213 
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Table 3 (cont.) 

Zone axis 
Plate Figure CS TinO2n-1 

number number plane n indices 
7377 6(b) (1~2) 18 [230] 

½[011] 

~[121] 

6741 7(a) (152) 20 [230] 
½[011] 

~[1211 

4332 7(b) (152) 20 [1101 
½[011] 

-~r[121] 

dHKL (00L) A (HKL) 
(HKL) Obs. Calc. Obs. Calc. 

001 1.833 1.814 
320 0.289 0.2903 92.0 92.30 
321 0.288 0.2885 83.0 83.15 
3'2] 0.285 0.2849 100.7 101.33 
3~2 0.279 0.2798 74.0 74-34 
001 1.833 1.814 
3~0 0.289 0.2905 92.0 90.76 
3~1 0-288 0-2875 83.0 81.64 
3~1" 0.285 0.2863 100.7 99.84 
3~2 0.279 0.2777 74.0 72-93 
001 2.041 2.0210 
3~0 0.290 0.2903 91-6 92.06 
3Y-I 0.288 0.2889 84.0 83.84 
32-]" 0.286 0-2860 100-0 100-19 
322 0.280 0-2818 76.0 75-88 
001 2.041 2.0210 
3~0 0.290 0.2905 91.6 90-69 
3~1 0.288 0.2880 84.0 82.49 
3~i" 0.286 0.2871 100-0 98.85 
3~2 0.280 0-2801 76.0 74-60 
001 2.034 2.0210 
110 0.679 0.6832 94.4 94.70 
1T-l" 0.631 0.6317 112.5 112.85 
112 0.546 0.5456 127.0 127.26 
1]J 0.461 0.4611 137-8 137-72 
001 2.034 2.0210 
1T0 0.679 0.6832 94.4 94.70 
1]]" 0.631 0.6317 112.5 112.85 
1]'-2 0.546 0.5456 127.0 127-26 
l]--J 0.461 0.4611 137.8 137-72 

countered; all could be indexed in a straightforward 
manner  using the above matrices, which is a severe 
test of  the proposed unit  cells. 

(b) General observations 
All the samples were strikingly heterogeneous, as 

the summary  in Table 4 shows. In addition, most  
diffraction patterns were complicated by the presence 
of  the fine scale multiple twinning already referred to 
(cf. Fig. 1 of  Bursill et al., 1969). By carefully selecting 
areas containing only one orientation the effects of  the 
latter have been practically eliminated in the patterns 
shown in Figs. 2 to 7. Areas containing only one n value 
were extremely rare;  usually a parallel intergrowth of 
adjacent n values occurred. In the (121)r mixtures these 
were immediately adjacent, i.e. An = 1; e.g. Fig. 2 and 
4(b) show n = 6 , 7  and n = 9 , 1 0  respectively. (N.B. The 
existence of  n=10(121)r  had  not previously been 
established.) In the (132)r mixtures An = 2  always: the 

mixtures n =  18,20 and n=20 ,22  were frequently ob- 
served [Fig. 9(a) and (b)]. In contradict ion with our 
prel iminary assessment (Bursill et al., 1969) a careful 
examinat ion of  the diffraction patterns f rom well- 
ordered samples has  failed to establish unambiguous  
evidence for the existence of any (132)r structure with 
an odd value of  n. No  phases were observed in the 
interval 1.900 < x < 1.938 between n = 10(121)r and 
n=16(132)r.  Fig. 9(c) shows that n=9,10(121)r  and 
n =  16(132)r coexist in the same area of a flake f rom 
sample 4.* 

The diffraction patterns reveal a wide var ia t ion  in 
the degree of ordering of  the CS planes;  the consequent 
effects range from sharp diffraction spots to conti- 
nuous streaking along g{132}r. Occasionally they are 
streaked parallel to both  g{101}r and g{132}r. In  the 

* Note added in proof: Subsequent work (to be published 
shortly) has changed this situation. 

Table 4. Phases observed in the various samples (all of  which showed varying degrees of  disorder) 
Estimated mean 

Sample composition Observed n values Relevant Figure numbers 
No. .~ Jq = 1/(2- :~) {121 )r {l~2}r (and n values) 

1 1.96 25 - 20, ,-, 25, > 25 8(a) (disordered ,-~ 25) 
2 1.945 18.2 - 16, 18, 20 5 (16), 7(a) (20), 7(b) (20) 
3 1.936 15.6 9, 10 18, 20, ,~25 6(a) (18), 6(b) (18), 9(a) (18, 20) 
4 1.9268 13.5 7, 8, 9 16, 20, 22, 24 3 (8), 9(c) (9, 10, 16) 
5 1.9247 13-5 6, 7, 8 20, 22 2 (6, 7), 9(b) (20, 22) 
6 1"889 9 9, 10 16, 18, 20 4(a) (9), 4(b) (9, 10) 
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earlier paper (Bursill et al., 1969) similar but much 
heavier streaking along g{101}r was interpreted as 
possibly indicating the existence of a third family of 
structures, derived from rutile by regular CS planes 
parallel to {101}. We have since determined that the 
displacement vector at isolated {101} faults in fully 
oxidized rutile is R=-}(10T) (Bursill & Hyde, 1970). 
This is parallel to the fault plane, which is therefore an 
APB and not a CS plane. Consequently it does not 
change the stoichiometry of the crystal. We believe 
that these faults arise from the operation of the slip 
system ½(10T) {101} (Ashbee & Smallman, 1963) as a 
result of the elastic stress during reduction, or possibly 
quenching. 

5. Discussion 

The observed electron diffraction patterns may be 
satisfactorily indexed by using the unit-cell parameters 
proposed in §2. It can be argued that other CS dis- 
placement vectors might give equally good agreement 
and, indeed, Table 3 shows that the d values and inter- 
planar angles for -~[121] (132), (rutile) and ½[011] (132), 
(rutile) are barely distinguishable. However, the agree- 
ment between observed and calculated values is some- 
wlaat closer for the latter and, as mentioned earlier, 
½[011]r is the displacement vector at (132)r CS planes 
when they occur singly or in groups. Finally, it is 
crystallochemically reasonable (while -~[121]r is not). 
In direction and magnitude it corresponds very nearly 
to the edge of a [TiO6] octahedron in the rutile struc- 
ture, and therefore allows a plane of empty oxygen 
sites to be refilled by translation of the adjacent oxygen 
plane while, at the same time, translating the titanium 
atoms from the normally occupied to the normally 
unoccupied octahedral interstices. 

For the structures 4<n<9(121) r  Andersson & 
Jahnberg (1963) found that the observed unit-cell 
volumes were always slightly larger than the 'ideal' 
values. This they attributed to mutual repulsion of the 
close metal ions at the CS planes (in adjacent face- 
sharing octahedra). A similar expansion is to be ex- 
pected for the (132)r CS structures, but less pronounced 
because of the larger separation between the pairs of 
face-sharing octahedra, Selected area electron diffrac- 
tion patterns are not sufficiently accurate to measure, 
or even confirm, this small expansion. 

In samples 3, 4, 5 and 6 members of both the (121)r 
and (132)r families coexisted (Table 4). The highest 

value for n(121)r and the lowest value for n(132)r 
varies; they may well be temperature dependent. 

The observed inhomogeneities may result from up- 
take of oxygen from the gas phase and/or unmixing 
during cooling. They prevent a definitive check of the 
proposed formula TinO2n-1 for the (132)r family be- 
because it is not possible to make accurate estimates 
of the proportions of each of the several phases in a 
sample. But many specimens were studied from dif- 
ferent portions of each sample and, with the exception 
of sample 6, they all showed a distribution of n values 
consistent with their independently determined mean 
compositions (Table 4). The most homogeneous was 
sample 2: it contained n = 16, 18 and 20 and had a mean 
composition of TIO1.944 compared with the estimated 
TJOi.94-i.9s. 
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